ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
G. T. McConville, D. A. Menke, R. E. Ellefson
Fusion Science and Technology | Volume 8 | Number 2 | September 1985 | Pages 2245-2256
Research and Development | Proceedings of the Second National Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Dayton, Ohio, April 30 to May 2, 1985) | doi.org/10.13182/FST85-A24616
Articles are hosted by Taylor and Francis Online.
The rates of formation of DT in a mixture of D2 and T2 have been measured as a function of initial T2 concentration, pressure, temperature, and methane concentration in a stainless steel reaction container which had been treated to inhibit protium ingrowth. An attempt has been made to explain the experimental results on the basis of ion-molecule chain reactions. Some of the observations are consistent with a gas-phase ion, ground-state molecule reaction, but some of the more interesting observations require more complicated models. The addition of excited state molecules or heterogeneous catalytic effects are possibilities that will need further experiments for confirmation.