ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. T. Gill, C. W. Pierce
Fusion Science and Technology | Volume 8 | Number 2 | September 1985 | Pages 2217-2223
Blanket and Process Engineering | Proceedings of the Second National Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Dayton, Ohio, April 30 to May 2, 1985) | doi.org/10.13182/FST85-A24612
Articles are hosted by Taylor and Francis Online.
The prospects for using piezoelectrically-driven valves with elastomeric or thermoplastic poppets in tritium gas service have been investigated. A modeling study of a typical valve incorporating ethylene-propylene rubber (EPR) or high density polyethylene (HDPE) was performed. Equations were developed linking applied voltage; ceramic bimorph preloading force, elastic deflection modulus, and specific deflection force (per volt applied); polymer elastic modulus, thickness, seal surface area, and compression (to make seal); elastomer compression set; thermoplastic creep modulus; and flow gap between seat and polymer tip. It was determined that, while EPR should seal the valve orifice more easily, HDPE should produce a valve flow rate vs. voltage curve less variant with time and exposure. Both should, however, be sealable and allow flow curves perturbed by ≤10% of full scale after ∼100 days of exposure to 105 Pa (1 atm) T2 gas (equivalent to ∼7 × 107 rad = 7 × 105 Gy dosage). aMound is operated by Monsanto Research Corporation for the U. S. Department of Energy under Contract No. DE-AC04-76DP00053. bThe Princeton University Plasma Physics Laboratory is operated by the U. S. Department of Energy under Contract No. DE-AC02-76CH03073.