ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
V. G. Vasilyev
Fusion Science and Technology | Volume 8 | Number 2 | September 1985 | Pages 2149-2152
Blanket and Process Engineering | Proceedings of the Second National Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Dayton, Ohio, April 30 to May 2, 1985) | doi.org/10.13182/FST85-A24601
Articles are hosted by Taylor and Francis Online.
Lithium oxide is a potential solid-state blanket material for fusion applications. Equilibrium water vapour pressure in the system Li2O-H2O including dehydration LiOH H2O and dissociation LiOH were studied in a temperature range 70–160 and 270–440°C respectively. The kinetics of LiOH dissociation was studied in a range 390–450°C by Mak Ben quartz spring balance and in a range 450–600°C by volumetric method collecting hydrogen after chemical decomposition of water on hot metal. Kinetics of tritium oxide release from neutron irradiated lithium oxide with initial concentration 1,11 109 and 3,33 109 Bq/g was studied in vacuum 1,333 Pa in the range 280–450°C. The initial and final stages of the process are characterized by activation energies of 83,5 and 54,4 kJ/mol, respectively. Taking into account the formation of OT groups into inorganic compound under irradiation a mechanism of water and tritium oxide formation and recovery from solid phase is a chemical recombination reaction (polycondensation) which brings to the formation of H2O or HTO and inorganic polymer (sintering).