ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
C. P. C. Wong, I. Maya, K. R. Schultz, C. Kessel, D. Roelant
Fusion Science and Technology | Volume 8 | Number 2 | September 1985 | Pages 2133-2142
Blanket and Process Engineering | Proceedings of the Second National Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Dayton, Ohio, April 30 to May 2, 1985) | doi.org/10.13182/FST85-A24599
Articles are hosted by Taylor and Francis Online.
As a part of the Blanket Comparison and Selection Study (BCSS), GA Technologies was responsible for the design of helium-cooled, solid- and liquid-metal breeder blankets. Conceptual blanket designs were developed, including the consideration of the generation, transport, and extraction of tritium. Evaluations were made of the inventory and leakage of tritium for helium-cooled Li2O and LiAlO2 and liquid lithium breeder blankets for tokamak and tandem mirror reactors. To facilitate the evaluation, a solid breeder tritium code TRIT4 was developed. In the helium-cooled solid-breeder blanket designs the bred tritium is extracted by a purge stream of helium flowing through the metal-clad solid breeder plates. For the Li2O designs, the breeder tritium inventory was found to be dominated by the solubility of LiOT in Li2O. For the LiAlO2 designs, the breeder tritium inventory was found to be dominated by the slow bulk diffusion of tritium in the breeder. The total tritium inventories for these designs are in the range of 24 to 134 gm, which is quite acceptable. Tritium control of the Li designs consists of circulation of the liquid lithium and optional slipstream cleanup of the primary coolant. The tritium inventory, dominated by the efficiency of the tritium extraction system, can be kept to an acceptable 330 gm. Tritium losses by permeation through the steam generator were also calculated. The influx of tritium into the main coolant stream includes permeation through the breeder cladding and first wall. The leakage rates for all the helium-cooled blanket designs are less than 100 Ci/day. The results from this study indicate that tritium inventories and leakages are acceptable for the proposed helium-cooled blankets. An assumption made in the tritium leakage calculations was that tritium is released to the helium purge and coolant streams as T2 and remains in that form. If oxidation to T2O is possible, significant reduction in the tritium leakage will be possible. We conclude that more experimental data on breeder material properties and tritium permeation behavior are needed. However, we are certain that an adequate number of different techniques are available to control the breeder tritium inventory and leakage to an acceptable level in helium-cooled solid- and lithium-breeder blankets.