ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
G. Pierini, R. Baratti, A.M. Polcaro, P.F. Ricci, A. Viola
Fusion Science and Technology | Volume 8 | Number 2 | September 1985 | Pages 2121-2126
Blanket and Process Engineering | Proceedings of the Second National Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Dayton, Ohio, April 30 to May 2, 1985) | doi.org/10.13182/FST85-A24597
Articles are hosted by Taylor and Francis Online.
The extraction of tritium from the liquid alloy 17Li83Pb has been examined taking into consideration the equations related to the design of “droplet spray” and “bubble” extractors in order to verify which are the higher tritium recovery efficiencies which can be realized so as to minimize the permeation of tritium into the water of the cooling system. As far as the droplet spray unit is concerned, the tritium extraction efficiency has been correlated to tritium pressure in the extractor, to the droplet radius and to the residence time of the droplets in the extractor. For the tritium desorption from the alloy, flowing countercurrent to a helium stream in a bubble extractor, the axial dispersion in the liquid and gaseous phases and the effects of gas phase expansion caused by reduced hydrostatic head in the extractor are taken into account. From the results of this study, both the bubble and spray droplet extractors seem to be very appropriate units for tritium recovery from the alloy. Moreover, in order to reach high extraction efficiencies for reducing the tritium permeation to the water cooling system, the spray droplet extractor appears more suitable.