ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
The last days of Hallam
The Hallam nuclear power plant, about 25 miles southwest of Lincoln, Neb., was an important part of the Atomic Energy Commission’s Reactor Power Demonstration Program. But in the end, it operated for only 6,271 hours and generated about 192.5 million kilowatt-hours of electric power during its short, 15-month life.
Magdi Ragheb, George H. Miley
Fusion Science and Technology | Volume 8 | Number 2 | September 1985 | Pages 2061-2066
Fusion Reactor | Proceedings of the Second National Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Dayton, Ohio, April 30 to May 2, 1985) | doi.org/10.13182/FST85-A24588
Articles are hosted by Taylor and Francis Online.
The LOTRIT inertial confinement reactor concept employs a deuterium burning target with a DT spark trigger core. This eliminates the need for tritium breeding in a blanket, and leads to a minimization of the tritium inventory and of the possibility of metal fire hazards if lead is used instead of lithium for first wall protection. The active fuel inventory in the fuel cycle and blanket per MJ of energy produced is only 5 percent of the DT case. The most significant reduction in the total tritium inventory is in the target manufacture and storage areas, and is about 1.8% of the DT case per unit of fusion energy produced. If the goal is to reduce the risk from tritium releases from fusion reactors to below that of fission reactors, it is estimated that the tritium releases must be maintained at 0.13–5.0 Ci/day. Attaining these values will be costly, technologically difficult and will constrain the design options in DT-based systems, but may be within the realm of systems using the LOTRIT concept.