ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
John W. Davis, T. A. Lechtenberg, Dale L. Smith, F. W. Wiffen
Fusion Science and Technology | Volume 8 | Number 2 | September 1985 | Pages 1927-1943
Technical Paper | Blanket Comparison and Selection Study | doi.org/10.13182/FST85-A24570
Articles are hosted by Taylor and Francis Online.
The Blanket Comparison and Selection Study (BCSS) had as its primary goal the selection of a limited number of blanket concepts for fusion power reactors, to serve as the focus for the U.S. Department of Energy blanket research and development program. To help provide a common basis for evaluation of all candidate blanket concepts considered by the BCSS, a structural materials data base assessment was performed that included a compilation of available materials properties data, specification of limiting criteria for materials performance, and determination of design allowable parameters. Three classes of alloys are currently considered as leading candidates for the first-wall/blanket structure of a fusion power reactor. For the BCSS, one reference or baseline alloy was selected from each class and one low-activation counterpart to each reference alloy was identified for evaluation. The alloy classes, reference alloys, and low-activation analogs selected were: austenitic stainless steels (primary candidate alloy; manganese-stabilized steel); ferritic or martensitic steels (HT-9, Fe-11 Cr-2.5 W-0.3 V-0.15 C); and vanadium-base alloys (V-15 Cr-5 Ti, reference alloy is low activation). The critical nuclear, thermophysical, and mechanical properties of the three reference alloys were reviewed. Where insufficient data exist for a reliable assessment, best estimates were provided for use in the blanket concepts development. For the low-activation analogs, the same properties as their respective reference alloys were assumed, including radiation damage resistance. The design stress limits, maximum allowable operating temperature, and lifetime were set primarily by radiation damage considerations. Critical design issues associated with each of the reference alloys and low-activation analogs were identified, together with limiting criteria for materials performance.