ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Nuclear power’s new rule book: Managing uncertainty in efficiency, safety, and independence
The U.S. nuclear industry is standing at its most volatile regulatory moment yet—one that will shape the trajectory and the safety of the industry for decades to come. Recent judicial, legislative, and executive actions are rewriting the rules governing the licensing and regulation of nuclear power reactors. Although these changes are intended to promote and accelerate the deployment of new nuclear energy technologies, the collision of multiple legal shifts—occurring simultaneously and intersecting with profound technological uncertainties—is overwhelming the Nuclear Regulatory Commission and threatening to destabilize investor and industry expectations.
Yung Y. Liu, S. W. Tam
Fusion Science and Technology | Volume 7 | Number 3 | May 1985 | Pages 399-410
Technical Paper | Blanket Engineering | doi.org/10.13182/FST85-A24559
Articles are hosted by Taylor and Francis Online.
Thermal conductivities (k,keff) have been estimated for sintered and sphere-pac Li2O and γ-LiAlO2 with and without neutron irradiation effects. The estimation is based on (a) data from unirradiated UO2, Li2O, and γ-LiAlO2; (b) data from irradiated dielectric insulator materials; and (c) relatively simple physical models. Comparison of model predictions with limited ex- and in-reactor data found reasonable agreement, thus lending credence for their use in design applications. The impact of thermal conductivities on tritium breeding and power generation infusion solid breeder blankets is briefly highlighted.