ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
William R. Sutton III, Dieter J. Sigmar+, George H. Miley
Fusion Science and Technology | Volume 7 | Number 3 | May 1985 | Pages 374-390
Technical Paper | Plasma Engineering | doi.org/10.13182/FST85-A24557
Articles are hosted by Taylor and Francis Online.
An alpha-driven fast magnetosonic wave instability is investigated in tokamak plasmas for propagation transverse to the external magnetic field at frequencies several times the alpha gyrorate. A two-dimensional differential quasi-linear diffusion equation is derived in cylindrical υ⊥-υ∥ geometry. The quasi-linear diffusion coefficients in the small parameter k∥/k⊥ are expanded and the problem is reduced to one dimension by integrating out the υ∥ dependence. Reactor relevant information is obtained using data from the one-dimensional formulation in a 1½-dimensional tokamak transport code. Contour plots of the alpha threshold fraction are used to identify the instability regions in the ne-Ti plane. Alpha/background electron fractions as low as 10−6 to 10−4 may trigger the instability. For a typical reactor-size tokamak, an enhancement of the fraction of the alpha energy transferred to ions by as much as 1.5 can occur for Ti = Te at 7 keV. Still, due to the rapid equilibration of electron and ion temperatures, a < 1 to 2% increase in fusion power occurs overall.