ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Scipione Bobbio, Enzo Coccorese, Giulio Fabricatore, Raffaele Martone, Guglielmo Rubinacci
Fusion Science and Technology | Volume 7 | Number 3 | May 1985 | Pages 345-360
Technical Paper | Plasma Engineering | doi.org/10.13182/FST85-A24555
Articles are hosted by Taylor and Francis Online.
In the international tokamak reactor (INTOR), the problem of the passive control of the vertical instability is to be solved by means of suitably shaped saddle coils to be embedded in the blanket structure. The efficiency of such a system depends on the characteristics of the passive conductors and on the plasma equilibrium as well as on the type of plasma displacement assumed. To cover the physical uncertainties caused by the model assumptions for the plasma with respect to the motion on a slow time scale (of the order of several tens of milliseconds) corresponding to efficient passive stabilization, four different plasma displacement models are considered and compared with each other. A stability analysis is performed using the energy principle, expressed in circuital form. The results of the INTOR analysis are presented and discussed, showing in particular that under very general conditions the optimum stabilization efficiency is obtained for passive conductors situated at ∼60 deg above and below the horizontal midplane at the outboard side. The effect of the geometric parameters of the saddle coils (e.g., area and shape of the cross section, toroidal segmentation, etc.) on the stabilization efficiency is investigated; a parametric study of these dependences is presented. General conclusions applicable to INTOR are drawn.