ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Scipione Bobbio, Enzo Coccorese, Giulio Fabricatore, Raffaele Martone, Guglielmo Rubinacci
Fusion Science and Technology | Volume 7 | Number 3 | May 1985 | Pages 345-360
Technical Paper | Plasma Engineering | doi.org/10.13182/FST85-A24555
Articles are hosted by Taylor and Francis Online.
In the international tokamak reactor (INTOR), the problem of the passive control of the vertical instability is to be solved by means of suitably shaped saddle coils to be embedded in the blanket structure. The efficiency of such a system depends on the characteristics of the passive conductors and on the plasma equilibrium as well as on the type of plasma displacement assumed. To cover the physical uncertainties caused by the model assumptions for the plasma with respect to the motion on a slow time scale (of the order of several tens of milliseconds) corresponding to efficient passive stabilization, four different plasma displacement models are considered and compared with each other. A stability analysis is performed using the energy principle, expressed in circuital form. The results of the INTOR analysis are presented and discussed, showing in particular that under very general conditions the optimum stabilization efficiency is obtained for passive conductors situated at ∼60 deg above and below the horizontal midplane at the outboard side. The effect of the geometric parameters of the saddle coils (e.g., area and shape of the cross section, toroidal segmentation, etc.) on the stabilization efficiency is investigated; a parametric study of these dependences is presented. General conclusions applicable to INTOR are drawn.