ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
D. R. Welch, D. B. Harris, George H. Miley
Fusion Science and Technology | Volume 7 | Number 3 | May 1985 | Pages 334-344
Technical Paper | Experimental Device | doi.org/10.13182/FST85-A24554
Articles are hosted by Taylor and Francis Online.
Double-peaked energy spectra of deuterium-deuterium protons have been observed from laser implosion experiments at the University of Rochester. These spectra have been used to study implosion dynamics. The energy and broadening of the two peaks relate to distinct burn phases, shock coalescence, and compression. Data are obtained by unfolding the spectra. Using a model for changing target ρR conditions, the proton energy loss and the broadening of each peak determine the fuel compression and temperature for each burn phase. An ion temperature for the shock phase is determined from thermal broadening. The compression peak's energy broadening and separation from the shock peak is fit to an adiabatic temperature model. Preliminary data suggest that temperatures during both burns are 20% below that predicted by an extensive simulation code. Compressions are also lower than predicted.