ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
S. Z. Fixler, G. W. Gilchrist, J. Bialek
Fusion Science and Technology | Volume 7 | Number 1 | January 1985 | Pages 111-124
Technical Paper | Vacuum System | doi.org/10.13182/FST85-A24523
Articles are hosted by Taylor and Francis Online.
A transient thermal analysis was conducted on the Tokamak Fusion Test Reactor vacuum vessel to determine the response of the vessel and its critical components to several pulsed discharge cleaning (PDC) and in situ bakeout scenarios. The three-dimensional model is described. The method of analysis, flow distribution, boundary conditions, and assumed configuration are stated. The resultant temperatures and thermal gradients are presented as a function of time and space on the vessel, bellows, bellows covers, ports, and port covers. Two PDC and three bakeout scenarios were analyzed. For nominal discharge cleaning, a 100-kW plasma with a 25-kW bellows ohmic heat (OH) dissipation was assumed. For aggressive discharge cleaning, a 400-kW plasma with a 100-kW bellows OH dissipation was assumed. In the first bakeout scenario a series of 56°C (100°F) temperature steps (ΔT) was imparted to the heating air at 10-h intervals until a bakeout temperature of 250°C was attained. In the second scenario the interval between steps was increased to 25 h. In the third scenario the temperature step (AT) was reduced to 28°C (50°F) at 10-h intervals between steps. The results of the analysis indicate that temperatures during initial operations can be maintained within allowable limits. A PDC maximum temperature of 232°C occurs on the bellows cover plates. The bakeout results show that for a 28°C step, 10-h interval, it takes 112 h to bake out the entire torus. Initial results of the thermal analysis enabled setting up in situ bakeout constraints that prevent excessive vessel/bellows stresses and minimized bakeout run times.