ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Kohtaro Ueki, Yuichi Ogawa, Hiroshi Naito, Tomonori Hyodo
Fusion Science and Technology | Volume 7 | Number 1 | January 1985 | Pages 90-98
Technical Paper | Shielding | doi.org/10.13182/FST85-A24521
Articles are hosted by Taylor and Francis Online.
A 14-MeV neutron streaming through a narrow vertical hole duct in the diagnostics room of a Deuterium-Tritium Fusion Experimental Device (R tokamak) was analyzed using the Monte Carlo coupling technique. Neutron dose rate distributions in the horizontal direction as well as in the axial direction along the vertical hole duct were calculated to evaluate the neutron streaming effect through the hole duct. The dose rate distribution in the axial direction undergoes relatively small changes, but the distribution changed abruptly in the horizontal direction. Compared to ANISN results, Monte Carlo calculations show a neutron streaming effect at locations beyond the vertical hole duct axis in the horizontal direction. The fractional standard deviation (FSD) due to error propagation was calculated by the ORION code based on an error propagation equation. The FSDs were within 0.06 at the detector locations along the axial direction along the vertical hole duct; but, they were as much as 0.25 to 0.47 for >15 cm beyond the hole duct axis in the horizontal direction.