ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Kohtaro Ueki, Yuichi Ogawa, Hiroshi Naito, Tomonori Hyodo
Fusion Science and Technology | Volume 7 | Number 1 | January 1985 | Pages 90-98
Technical Paper | Shielding | doi.org/10.13182/FST85-A24521
Articles are hosted by Taylor and Francis Online.
A 14-MeV neutron streaming through a narrow vertical hole duct in the diagnostics room of a Deuterium-Tritium Fusion Experimental Device (R tokamak) was analyzed using the Monte Carlo coupling technique. Neutron dose rate distributions in the horizontal direction as well as in the axial direction along the vertical hole duct were calculated to evaluate the neutron streaming effect through the hole duct. The dose rate distribution in the axial direction undergoes relatively small changes, but the distribution changed abruptly in the horizontal direction. Compared to ANISN results, Monte Carlo calculations show a neutron streaming effect at locations beyond the vertical hole duct axis in the horizontal direction. The fractional standard deviation (FSD) due to error propagation was calculated by the ORION code based on an error propagation equation. The FSDs were within 0.06 at the detector locations along the axial direction along the vertical hole duct; but, they were as much as 0.25 to 0.47 for >15 cm beyond the hole duct axis in the horizontal direction.