ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Farrokh Najmabadi, Robert W. Conn
Fusion Science and Technology | Volume 7 | Number 1 | January 1985 | Pages 57-65
Technical Paper | Plasma Engineering | doi.org/10.13182/FST85-A24518
Articles are hosted by Taylor and Francis Online.
The operation of a tandem mirror reactor (TMR) at fractions of full power is an important part of the power plant operation. It has been shown that fractional power operation can best be achieved by controlling the plasma radius, leaving the rest of plasma parameters unchanged. The physics of magnetic confinement in a TMR can be used to design the desired radius control (RC) system. It is proposed to bias the field lines through the ends of a tandem mirror device and control the radial electric field in order to guard against rotational instabilities and ensure nonstochastic radial transport. In this scheme, plasma on the unbiased field lines suffers rapid transport and is lost. As such, the potential control of the direct converter plates as well as the location of the grounded halo dumps requires the flux tube containing the core plasma to match the direct converter area at all times. Based on this effect, an RC system can be devised that uses the conservation of the magnetic flux to adjust the field near the direct converter such that a flux tube with a smaller radius in the device matches the direct converter. Field lines outside this flux tube are not properly biased and cannot support core plasma. A practical design of such an RC system for the Mirror Advanced Reactor Study conceptual TMR is presented. The power consumption by the RC coil system is modest and no engineering difficulty in the design and construction of such a system is expected. Utilization of such an RC system in advanced tandem mirror experiments can also be of great use in the study of such various phenomena as radial transport, control of the radial electric field, halo plasma production, radio-frequency absorption, etc.