ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Ronald D. Boyd
Fusion Science and Technology | Volume 7 | Number 1 | January 1985 | Pages 7-30
Technical Paper | Blanket Engineering | doi.org/10.13182/FST85-A24515
Articles are hosted by Taylor and Francis Online.
The present understanding of critical heat flux (CHF) in subcooled flow boiling with water is reviewed and fusion reactor component high-heat flux (HHF) requirements are outlined. This survey (Parts I and II), which contains a representative coverage of the literature over the last 30 years, is concerned only with CHF in the subcooled flow boiling regime. Although not exhaustive, CHF data base parameter ranges are also given as an aid for fusion component designers in locating the appropriate data for an application. Because of the relatively HHF levels and long pulse durations in the next generation reactors, fusion components must be actively cooled. All fusion components are heated nonuniformly over their surface and their surface area ranges from 0.1 to 1000 m2. Although most components are subjected to fluxes from ∼0.005 kW/cm2 (first wall) to near 1 kW/cm2 (limiters and divertors), some components are subjected to fluxes from 2 kW/cm2 (first wall in compact reactors) to 8 kW/cm2 (beam dumps). Subcooled flow boiling has the greatest potential of accommodating the steady-state HHF levels encountered by fusion reactor components. Although the available heat flux data base brackets those for most fusion components, the existing data are sparse or nonexistent for the length-to-diameter ratios (e.g., >200 for limiters and >50 for beam dumps) necessary for future HHF fusion components. There are more than 20 parameters that influence subcooled flow boiling CHF and many other tested techniques that enhance heat transfer by a factor of >2. The engineering implementation and design of fusion components cannot be optimized until the physical relationships between the maximum CHF and both the flow parameters and thermophysical properties have been determined. This can be accomplished only if improvements are made in the understanding of the fundamental mechanisms controlling the heat transfer and CHF in the subcooled flow boiling regime.