ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Clinton Craig Petty, James Craig DeBoo, Robert John La Haye, Timothy Charles Luce, Peter A. Politzer, Clement Po-Ching Wong
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 1-17
Technical Paper | doi.org/10.13182/FST03-A245
Articles are hosted by Taylor and Francis Online.
The design of a reduced size (R = 4.45 m, BT = 5.04 T) ignition tokamak (Q = ) with superconducting coils using a standard ELMing H-mode plasma appears to be feasible. This effective size (BT2/3R5/6) is smaller than current proposals for Q = 10 burning (D-T) plasma experiments. The good confinement required for ignition with this small effective size is obtained by operating along a gyroBohm scaling path starting from the existing tokamak database at high beta ( = 4.1%) so that the loss power from core transport exceeds the H-mode threshold power. Using a design that can achieve a high normalized current (Ip /aBT = 1.63) also helps to decrease the size of the machine. The design of this relatively compact ignition tokamak satisfies reasonable engineering constraints on the superconducting toroidal field coils and central solenoid, and allows for a sufficiently long burn time for the plasma current to relax to its final state.