ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
State legislation: Colorado redefines nuclear as “clean energy resource”
Colorado Gov. Jared Polis signed a bill into law on Monday that adds nuclear to the state’s clean energy portfolio—making nuclear power eligible for new sources of project financing at the state, county, and city levels.
S. Ceccuzzi, E. Barbato, A. Cardinali, C. Castaldo, R. Cesario, M. Marinucci, F. Mirizzi, L. Panaccione, G. L. Ravera, F. Santini, G. Schettini, A. A. Tuccillo
Fusion Science and Technology | Volume 64 | Number 4 | November 2013 | Pages 748-761
Technical Paper | doi.org/10.13182/FST13-A24095
Articles are hosted by Taylor and Francis Online.
Recent experiments on lower hybrid (LH) penetration at reactor-relevant densities, together with the recent demonstration of the technological viability of the passive-active multijunction launcher on long pulses, have removed major concerns about the employment of LH waves on next-generation tokamaks, where LH could profitably drive far-off-axis plasma current, allowing current profile control and helping in sustaining burning performance. In this frame and with the aim of being prepared for the design phase of the next experimental reactors, preliminary investigations on the possibility of using LH on DEMO have been started under the supervision of the European Fusion Development Agreement. This paper reports the outcomes of these studies, addressing three main questions: Is LH useful for DEMO? If so, which setting of physics parameters makes it as effective as possible? Last, can available technology fulfill such demands?From the physics viewpoint, deposition sensitivity to launcher poloidal position, scrape-off layer parameters, and peak n|n+ have been analyzed, indicating the equatorial injection of 5-GHz waves with n|n+peak = 1.8 as the most favorable option. On the engineering side, specific research and development needs have been investigated on the basis of available information and sensible assumptions, showing that most of the components of the transmission line and, of highest priority, radio-frequency vacuum windows demand intense development.