ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
S. Ceccuzzi, E. Barbato, A. Cardinali, C. Castaldo, R. Cesario, M. Marinucci, F. Mirizzi, L. Panaccione, G. L. Ravera, F. Santini, G. Schettini, A. A. Tuccillo
Fusion Science and Technology | Volume 64 | Number 4 | November 2013 | Pages 748-761
Technical Paper | doi.org/10.13182/FST13-A24095
Articles are hosted by Taylor and Francis Online.
Recent experiments on lower hybrid (LH) penetration at reactor-relevant densities, together with the recent demonstration of the technological viability of the passive-active multijunction launcher on long pulses, have removed major concerns about the employment of LH waves on next-generation tokamaks, where LH could profitably drive far-off-axis plasma current, allowing current profile control and helping in sustaining burning performance. In this frame and with the aim of being prepared for the design phase of the next experimental reactors, preliminary investigations on the possibility of using LH on DEMO have been started under the supervision of the European Fusion Development Agreement. This paper reports the outcomes of these studies, addressing three main questions: Is LH useful for DEMO? If so, which setting of physics parameters makes it as effective as possible? Last, can available technology fulfill such demands?From the physics viewpoint, deposition sensitivity to launcher poloidal position, scrape-off layer parameters, and peak n|n+ have been analyzed, indicating the equatorial injection of 5-GHz waves with n|n+peak = 1.8 as the most favorable option. On the engineering side, specific research and development needs have been investigated on the basis of available information and sensible assumptions, showing that most of the components of the transmission line and, of highest priority, radio-frequency vacuum windows demand intense development.