ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
J.-M. Travere, M.-H. Aumeunier, M. Joanny, T. Loarer, M. Firdaouss, E. Gauthier, V. Martin, V. Moncada, L. Marot, D. Chabaud, E. Humbert, J.-J. Fermé, C. Thellier
Fusion Science and Technology | Volume 64 | Number 4 | November 2013 | Pages 735-740
Technical Paper | doi.org/10.13182/FST13-A24093
Articles are hosted by Taylor and Francis Online.
The ITER actively cooled tokamak is the next-generation fusion device that will allow study of the burning plasma over hundreds of seconds. ITER plasma-facing component (PFC) real-time protection will be mandatory to minimize operational risks as water leaks and critical heat flux lead to degradation of PFCs. The protection systems routinely used on Tore Supra (TS) or JET are based on infrared (IR) imaging systems controlling and monitoring the power load on the PFCs through surface temperature measurements. Thanks to TS expertise in actively cooled tokamak and long-pulse operation, three urgent research and development domains are discussed in this paper addressing the feasibility and the performance of the PFC protection function for the new and harsh environment of ITER: (a) the understanding of IR signals in a reflective environment using a physics-based light model simulation; (b) a PFC protection data processing architecture for event detection and identification; and (c) the feasibility, performance, and prototyping of the first optical component of the imaging systems - actively cooled, facing the plasma - which will impact the image quality and therefore PFC protection performance.