ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
F. Saint-Laurent, G. Martin, T. Alarcon, A. Le Luyer, P. B. Parks, P. Pastor, S. Putvinski, C. Reux, J. Bucalossi, S. Bremond, Ph. Moreau
Fusion Science and Technology | Volume 64 | Number 4 | November 2013 | Pages 711-718
Technical Paper | doi.org/10.13182/FST13-A24090
Articles are hosted by Taylor and Francis Online.
Runaway electrons (REs) generated during disruption are identified as a major issue for ITER and reactor-size tokamaks. Such electrons are produced when a large toroidal electric field is generated in the plasma. This field continuously accelerates low-collisional electrons up to relativistic energy. Such a large electric field occurs both in the plasma core at thermal quench of the disruption when the current profile flattens due to high magnetohydrodynamic activity, and during the current quench (CQ) of a disruption. These REs may initiate secondary RE generation during CQ due to the avalanching process, leading to a multiplication of these relativistic electrons. The impact of REs on the first wall is well localized due to their very small pitch angle. The energy deposition may be huge, and plasma-facing component damages are often reported.Mitigation techniques are thus mandatory to suppress RE formation or/and reduce their heat loads. Two ways are explored on Tore Supra: (a) suppressing the RE beam formation and avalanche amplification by multiple gas jet injections at CQ and (b) controlling the RE beam when it is formed and increasing the collisionality to slow down the relativistic electrons.