ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NRC completes environmental review of Dresden SLR
The Nuclear Regulatory Commission has found that the environmental impacts of renewing the operating license of the Dresden nuclear power plant outside Chicago, Ill., for an additional 20 years are not great enough to prohibit doing so.
F. Saint-Laurent, G. Martin, T. Alarcon, A. Le Luyer, P. B. Parks, P. Pastor, S. Putvinski, C. Reux, J. Bucalossi, S. Bremond, Ph. Moreau
Fusion Science and Technology | Volume 64 | Number 4 | November 2013 | Pages 711-718
Technical Paper | doi.org/10.13182/FST13-A24090
Articles are hosted by Taylor and Francis Online.
Runaway electrons (REs) generated during disruption are identified as a major issue for ITER and reactor-size tokamaks. Such electrons are produced when a large toroidal electric field is generated in the plasma. This field continuously accelerates low-collisional electrons up to relativistic energy. Such a large electric field occurs both in the plasma core at thermal quench of the disruption when the current profile flattens due to high magnetohydrodynamic activity, and during the current quench (CQ) of a disruption. These REs may initiate secondary RE generation during CQ due to the avalanching process, leading to a multiplication of these relativistic electrons. The impact of REs on the first wall is well localized due to their very small pitch angle. The energy deposition may be huge, and plasma-facing component damages are often reported.Mitigation techniques are thus mandatory to suppress RE formation or/and reduce their heat loads. Two ways are explored on Tore Supra: (a) suppressing the RE beam formation and avalanche amplification by multiple gas jet injections at CQ and (b) controlling the RE beam when it is formed and increasing the collisionality to slow down the relativistic electrons.