ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
J.-L. Duchateau, M. Coatanea, B. Lacroix, S. Nicollet, D. Ciazynski, P. Bayetti
Fusion Science and Technology | Volume 64 | Number 4 | November 2013 | Pages 705-710
Technical Paper | doi.org/10.13182/FST13-A24089
Articles are hosted by Taylor and Francis Online.
The quench of one of the ITER magnet systems is an irreversible transition of the conductor from superconducting to normal resistive state. The normal zone propagates along the cable-in-conduit conductor, dissipating a large power. The detection has to be fast enough (1 to 2 s) to initiate the dumping of the magnetic energy and avoid irreversible damage of the systems.The experience of CEA is based on the operation of the superconducting tokamak Tore Supra for more than 20 years. In support of ITER, CEA was also very involved in quench detection investigations during these past 3 years.The primary quench detection in ITER is based on voltage detection, the most rapid detection. The very magnetically disturbed environment during a plasma scenario makes the voltage detection particularly difficult, inducing large inductive components across the pulsed coils (10 kV) or coil subcomponents. Voltage compensations therefore have to be designed to discriminate the resistive voltage associated with the quench.A secondary detection based on a thermohydraulic signals system also has to be investigated to protect the environment in case of a nondetected quench, especially for the largest ITER system, which is the toroidal field system with a stored energy of 40 GJ.