ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
J.-L. Duchateau, M. Coatanea, B. Lacroix, S. Nicollet, D. Ciazynski, P. Bayetti
Fusion Science and Technology | Volume 64 | Number 4 | November 2013 | Pages 705-710
Technical Paper | doi.org/10.13182/FST13-A24089
Articles are hosted by Taylor and Francis Online.
The quench of one of the ITER magnet systems is an irreversible transition of the conductor from superconducting to normal resistive state. The normal zone propagates along the cable-in-conduit conductor, dissipating a large power. The detection has to be fast enough (1 to 2 s) to initiate the dumping of the magnetic energy and avoid irreversible damage of the systems.The experience of CEA is based on the operation of the superconducting tokamak Tore Supra for more than 20 years. In support of ITER, CEA was also very involved in quench detection investigations during these past 3 years.The primary quench detection in ITER is based on voltage detection, the most rapid detection. The very magnetically disturbed environment during a plasma scenario makes the voltage detection particularly difficult, inducing large inductive components across the pulsed coils (10 kV) or coil subcomponents. Voltage compensations therefore have to be designed to discriminate the resistive voltage associated with the quench.A secondary detection based on a thermohydraulic signals system also has to be investigated to protect the environment in case of a nondetected quench, especially for the largest ITER system, which is the toroidal field system with a stored energy of 40 GJ.