ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Y. Ikeda, A. Kasugai, S. Moriyama, K. Kajiwara, M. Seki, M. Tsuneoka, K. Takahashi, K. Anno, K. Hamamatsu, S. Hiranai, Yu. Ikeda, T. Imai, K. Sakamoto, M. Shimono, S. Shinozaki, M. Terakado, T. Yamamoto, K. Yokokura, T. Fujii
Fusion Science and Technology | Volume 42 | Number 2 | September-November 2002 | Pages 435-451
Technical Paper | doi.org/10.13182/FST02-A239
Articles are hosted by Taylor and Francis Online.
The electron cyclotron range of frequency (ECRF) system was designed and operated on the JT-60U to locally heat and control plasmas. The frequency of 110 GHz was adopted to inject the fundamental O-mode from the low field side with an oblique injection angle. The system is composed of four 1 MW-level gyrotrons, four transmission lines, and two antennae. The gyrotron is featured by a collector potential depression (CPD) and a gaussian beam output through a diamond window. The CPD enables JAERI to drive the gyrotron under the condition of the main DC voltage of 60 kV without a thyristor regulation. The gaussian mode from the gyrotron is effectively transformed to HE11 mode in the 31.75 mm diameter corrugated waveguide. About 75% of the output power of the gyrotrons can be injected into plasmas through the waveguides about 60 m in length. There are two antennae to control the deposition position of the EC wave during a plasma discharge. One is connected with three RF lines to steer the EC beams in the poloidal direction. The other is to control the EC beam in the toroidal and poloidal directions by two steerable mirrors.On the operation in 2000, the power of 1.5 to 1.6 MW for 3 s was successfully injected into plasmas using three gyrotrons. Local profile control was demonstrated by using the antennae. This capability was devoted to improve the plasma performance such as high Te production more than 15 keV and suppression of the MHD activities. In 2001, the fourth gyrotron, whose structure was improved for long pulse operation, has been installed for a total injection power of ~3 MW.