ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
B. Navinsek
Fusion Science and Technology | Volume 6 | Number 2 | September 1984 | Pages 491-498
Technical Paper | Selected papers from the Ninth International Vacuum Congress and the Fifth International Conference on Solid Surfaces (Madrid, Spain, September 26-October 1, 1983) | doi.org/10.13182/FST84-A23226
Articles are hosted by Taylor and Francis Online.
Some candidate fusion materials such as nickel-base alloys and graphites were studied, because of their importance as first wall components in CTR devices. Polycrystalline samples of Inconel 600, Inconel 625, Nimonic alloy PE 16, nuclear grade graphite ATJ and pyrolytic graphite were investigated. Results for surface damage and topography, blistering, flaking, ion erosion and sputtering yields are reported for irradiations with low energy He+ ions (5–12 keV) at room temperature, using total ion doses up to 2×1019 ions cm−2. SEM, TEM and AES analyses were used to identify surface damage, structure and compositional changes after irradiation. Comparative studies of the ion erosion yield of nickel-base alloys, as measured by the step-height technique, were made. Total sputtering yields were determined dynamically for sputtered films of these alloys using a quartz crystal microbalance. The yields were studied as a function of ion dose, energy and surface roughness.