ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
J. P. Biersack
Fusion Science and Technology | Volume 6 | Number 2 | September 1984 | Pages 475-482
Technical Paper | Selected papers from the Ninth International Vacuum Congress and the Fifth International Conference on Solid Surfaces (Madrid, Spain, September 26-October 1, 1983) | doi.org/10.13182/FST84-A23224
Articles are hosted by Taylor and Francis Online.
Sputtering yields for light ions in the energy range of 0.1–10 keV (particles from fusion plasma) or 40–160 keV under oblique angles (from neutral beam injectors) are difficult to predict by analytic theories. In particular, the sputtering of first wall coatings with low Z compound materials, e.g. TiB2, TiC, cannot be reliably treated in an analytic theory. For these reasons, a large number of cases were studied with the Monte-Carlo code TRIM over the past years. Numerous results were obtained for H, D, T, and He ions incident at various energies and angles on fusion first wall materials (metals and low Z compounds). In addition the sputtering yields as a function of incident energy and angle, and the angular and energy distributions of the sputtered atoms were investigated. Further studies were performed to gain more information on the mechanisms involved: sputtered atoms resulting from incident versus reflected ions, primary knock-on versus secondary knock-on atoms, atoms from the surface versus deeper layers of origin, etc. Experimental data, as far as available, will be compared with the TRIM results.