ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
NRC approves V.C. Summer’s second license renewal
Dominion Energy’s V.C. Summer nuclear power plant, in Jenkinsville, S.C., has been authorized to operate for 80 years, until August 2062, following the renewal of its operating license by the Nuclear Regulatory Commission for a second time.
J. P. Biersack
Fusion Science and Technology | Volume 6 | Number 2 | September 1984 | Pages 475-482
Technical Paper | Selected papers from the Ninth International Vacuum Congress and the Fifth International Conference on Solid Surfaces (Madrid, Spain, September 26-October 1, 1983) | doi.org/10.13182/FST84-A23224
Articles are hosted by Taylor and Francis Online.
Sputtering yields for light ions in the energy range of 0.1–10 keV (particles from fusion plasma) or 40–160 keV under oblique angles (from neutral beam injectors) are difficult to predict by analytic theories. In particular, the sputtering of first wall coatings with low Z compound materials, e.g. TiB2, TiC, cannot be reliably treated in an analytic theory. For these reasons, a large number of cases were studied with the Monte-Carlo code TRIM over the past years. Numerous results were obtained for H, D, T, and He ions incident at various energies and angles on fusion first wall materials (metals and low Z compounds). In addition the sputtering yields as a function of incident energy and angle, and the angular and energy distributions of the sputtered atoms were investigated. Further studies were performed to gain more information on the mechanisms involved: sputtered atoms resulting from incident versus reflected ions, primary knock-on versus secondary knock-on atoms, atoms from the surface versus deeper layers of origin, etc. Experimental data, as far as available, will be compared with the TRIM results.