ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Y. Gotoh
Fusion Science and Technology | Volume 6 | Number 2 | September 1984 | Pages 424-427
Technical Paper | Selected papers from the Ninth International Vacuum Congress and the Fifth International Conference on Solid Surfaces (Madrid, Spain, September 26-October 1, 1983) | doi.org/10.13182/FST84-A23217
Articles are hosted by Taylor and Francis Online.
Trapping and release of deuterium at a pyrolytic graphite basal face are studied by using X-ray photoelectron spectroscopy. The trapped deuterium density in nearly 10 atomic layers of the surface is estimated through measurement of C 1s positive shift due to C-D bond formation. Most of the deuterium atoms trapped in the graphite to saturation at room temperature are not released by the heat-treatment at up to 450°C. The trapped-deuterium density is found to reach a lower equilibrium value by the bombardment to saturation at above 180°C than those by the bombardment at below 180°C. The equilibrium trapped-deuterium density decreases down to one third, as the target temperature is raised above 180°C to 430°C. The decrease in the equilibrium trapped-deuterium density at above 180°C is explained by the ion-induced re-emission of the deuterium.