ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
S. Fukuda, M. Mohri, T. Yamashina
Fusion Science and Technology | Volume 6 | Number 2 | September 1984 | Pages 420-423
Technical Paper | Selected papers from the Ninth International Vacuum Congress and the Fifth International Conference on Solid Surfaces (Madrid, Spain, September 26-October 1, 1983) | doi.org/10.13182/FST84-A23216
Articles are hosted by Taylor and Francis Online.
Compositional changes in the surface region of single-crystal SiC(0001) due to heat treatment and light ion irradiation in the keV range were studied with the use of AES. The heat treatment at 1000°C formed a carbon enriched layer with a thickness of 20 Å on the top surface and a carbon depletion layer below this layer. Both hydrogen and helium ion irradiation caused depletion of silicon atoms in the near surface region and depletion of carbon atoms in the deeper surface region. TRIM computations revealed that in the process of slowing down of incident hydrogen ions, their kinetic energy was transfered preferentially to silicon atoms in the near surface region and to carbon atoms in the deeper surface region. This tendency explains the formation of each altered layer.