ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
United States, Armenia reach agreement on nuclear cooperation
Vice President J.D. Vance and Armenian Prime Minister Nikol Pashinyan at the signing of the 123 Agreement. (Photo: Office of the Prime Minister of the Republic of Armenia)
During his visit to Armenia on February 9, Vice President J.D. Vance signed an agreement with Armenian Prime Minister Nikol Pashinyan for cooperation in the civil nuclear energy sector. The “Agreement on Cooperation between the Government of the Republic of Armenia and the Government of the United States of America in the Field of Peaceful Use of Nuclear Energy” will reportedly open the door to $5 billion in initial U.S. nuclear-related exports to Armenia, in addition to $4 billion worth of longer-term fuel and maintenance contracts.
S. Fukuda, M. Mohri, T. Yamashina
Fusion Science and Technology | Volume 6 | Number 2 | September 1984 | Pages 420-423
Technical Paper | Selected papers from the Ninth International Vacuum Congress and the Fifth International Conference on Solid Surfaces (Madrid, Spain, September 26-October 1, 1983) | doi.org/10.13182/FST84-A23216
Articles are hosted by Taylor and Francis Online.
Compositional changes in the surface region of single-crystal SiC(0001) due to heat treatment and light ion irradiation in the keV range were studied with the use of AES. The heat treatment at 1000°C formed a carbon enriched layer with a thickness of 20 Å on the top surface and a carbon depletion layer below this layer. Both hydrogen and helium ion irradiation caused depletion of silicon atoms in the near surface region and depletion of carbon atoms in the deeper surface region. TRIM computations revealed that in the process of slowing down of incident hydrogen ions, their kinetic energy was transfered preferentially to silicon atoms in the near surface region and to carbon atoms in the deeper surface region. This tendency explains the formation of each altered layer.