ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Ali E. Dabiri, Donald R. Dobrott, Husam Gurol, Dalton D. Schnack
Fusion Science and Technology | Volume 6 | Number 2 | September 1984 | Pages 265-272
Technical Paper | Fusion Reactor | doi.org/10.13182/FST84-A23157
Articles are hosted by Taylor and Francis Online.
A deuterium-deuterium (D-D) reversed-field pinch (RFP) reactor may be made comparable in size and cost to a deuterium-tritium (D-T) reactor at the expense of high-thermal heat load to the first wall. This heat load is the result of the larger percentage of fusion power in charged particles in the D-D reaction as compared to the D-T reaction. The heat load may be reduced by increasing the reactor size and hence the cost. In addition to this “degraded” design, the size may be kept small by means of a higher heat load wall, or by means of a toroidal divertor, in which case most of the heat load seen by the wall is in the form of radiation. Point designs are developed for these approaches and cost studies are performed and compared with a D-T reactor. The results indicate that the cost of electricity of a D-D RFP reactor is ∼20% higher than a D-T RFP reactor. This increased cost could be offset by the inherent safety features of the D-D fuel cycle.