ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
James A. Maniscalco, David H. Berwald, Ralph W. Moir, Joseph D. (J. D.) Lee, Edward Teller
Fusion Science and Technology | Volume 6 | Number 3 | November 1984 | Pages 584-596
Technical Paper | Fusion Reactor | doi.org/10.13182/FST84-A23140
Articles are hosted by Taylor and Francis Online.
Recent fusion breeder work and how breeding can be an early application of fusion R&D are reviewed. Fusion breeders are fusion reactors designed specifically to produce fissile fuel for fission reactors such as the light water reactor (LWR). Two kinds of fusion breeders are reviewed. The first uses a blanket designed to multiply neutrons by fissioning the abundant isotopes of 238U and 232Th. This design is predicted to produce enough fissile fuel for four or more LWRs and produces so much energy in the blanket that fusion performance can be reduced to a level technologically feasible within the next 10 to 15 yr. The second kind of fusion breeder uses a blanket designed to suppress fission, which enhances safety by the nonfissioning multiplication of neutrons in beryllium. This fission-suppressed fusion breeder is predicted to produce enough fissile fuel for ten or more L WRs of equal thermal power. Either kind of fusion breeder has the potential to provide a source of reasonably priced fissile fuel after the low-cost natural uranium fuel supply is gone. Thus, rapid expansion of conventional nuclear power could be provided, if necessary, to meet our nearer term needs, while at the same time providing an early application of nuclear fusion that could accelerate the commercial development of a fusion electricity generation technology to follow. Deployment scenarios show that the suppressed-fission-type fusion breeder could enable conventional nuclear plants to be expanded to 50% of the U.S. electrical capacity by the year 2050, if necessary. Despite the high development risk associated with fusion technologies, it appears that the potential advantages of the fusion breeder could be great enough to warrant an increase in research effort to the level required to determine its feasibility for commercial application and to ensure its availability when needed, provided that there is clear evidence of an increase in U.S. demand for fission power, as evidenced by new reactor orders.