ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
James A. Maniscalco, David H. Berwald, Ralph W. Moir, Joseph D. (J. D.) Lee, Edward Teller
Fusion Science and Technology | Volume 6 | Number 3 | November 1984 | Pages 584-596
Technical Paper | Fusion Reactor | doi.org/10.13182/FST84-A23140
Articles are hosted by Taylor and Francis Online.
Recent fusion breeder work and how breeding can be an early application of fusion R&D are reviewed. Fusion breeders are fusion reactors designed specifically to produce fissile fuel for fission reactors such as the light water reactor (LWR). Two kinds of fusion breeders are reviewed. The first uses a blanket designed to multiply neutrons by fissioning the abundant isotopes of 238U and 232Th. This design is predicted to produce enough fissile fuel for four or more LWRs and produces so much energy in the blanket that fusion performance can be reduced to a level technologically feasible within the next 10 to 15 yr. The second kind of fusion breeder uses a blanket designed to suppress fission, which enhances safety by the nonfissioning multiplication of neutrons in beryllium. This fission-suppressed fusion breeder is predicted to produce enough fissile fuel for ten or more L WRs of equal thermal power. Either kind of fusion breeder has the potential to provide a source of reasonably priced fissile fuel after the low-cost natural uranium fuel supply is gone. Thus, rapid expansion of conventional nuclear power could be provided, if necessary, to meet our nearer term needs, while at the same time providing an early application of nuclear fusion that could accelerate the commercial development of a fusion electricity generation technology to follow. Deployment scenarios show that the suppressed-fission-type fusion breeder could enable conventional nuclear plants to be expanded to 50% of the U.S. electrical capacity by the year 2050, if necessary. Despite the high development risk associated with fusion technologies, it appears that the potential advantages of the fusion breeder could be great enough to warrant an increase in research effort to the level required to determine its feasibility for commercial application and to ensure its availability when needed, provided that there is clear evidence of an increase in U.S. demand for fission power, as evidenced by new reactor orders.