ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Masahiro Kinoshita
Fusion Science and Technology | Volume 6 | Number 3 | November 1984 | Pages 574-583
Technical Paper | Tritium System | doi.org/10.13182/FST84-A23139
Articles are hosted by Taylor and Francis Online.
The simulation procedure used in the code, CRYDIS-2, is greatly improved. The previous procedure used the Newton-Raphson method choosing a set of temperatures and liquid flow rates for the independent variables. Considering the property that the convergence characteristics of the liquid flow rates are much less sensitive to the type of the iterative method than those of the temperatures, the iterative loop is divided into two loops — the inner loop of the quasi-Newton method for temperature corrections and the outer loop of the successive iteration for flow rate corrections. The corrections of the deviation coefficients are also made in the outer loop, together with the flow rate corrections, when the nonideality of the hydrogen isotope solution is incorporated in the model. Since the order of the Jacobian matrix is halved, and the numerical evaluation of the Jacobian matrix and its inversion are needed only once, both the computer storage requirements and computation time are remarkably reduced. Thus, a new computer code, CRYDIS-N, which uses an efficient simulation procedure, is developed. Also, a simple but powerful method for estimating the initial set of temperatures is proposed, and it assures rapid achievement of convergence. The simulation procedure is a verison particularly developed for simulating hydrogen isotope distillation columns.