ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Hiroji Katsuta, R. P. Anantatmula, Rebecca A. Bechtold, William F. Brehm
Fusion Science and Technology | Volume 6 | Number 1 | July 1984 | Pages 118-124
Technical Paper | Material Engineering | doi.org/10.13182/FST84-A23126
Articles are hosted by Taylor and Francis Online.
A 7Be transport test was performed in the Beryllium-7 Experimental Lithium Loop with hot leg at 270°C and cold leg at 230°C. The “cold leg” test stringer was in a rising temperature region at 250°C. A total of 108 test coupons were included in the material compatibility and deposition test programs, containing AISI Types 304 and 304L stainless steels, Fe-2¼ Cr-1 Mo, pure iron, molybdenum, beryllium, zirconium, titanium, yttrium, three different aluminide coatings on Type 304 stainless steel substrates, and both tubular and flat butt-welds of Type 304 stainless steel. An average lithium velocity of 1.36 m/s was established during the test, which was terminated after 3718 h. The 7Be activity data indicated that the deposition of 7Be is a function of temperature. The cold leg positions displayed maximum 7Be deposition followed by the intermediate temperature locations (cold leg test stringer) and the hot leg locations. Two chemical forms of 7Be are expected in lithium, namely, unbonded 7Be at a low concentration, and a fine precipitate of 7Be3N2 at a high concentration. The deposit in the hot leg region is presumed to be primarily 7Be, while the cold leg deposit is mostly 7Be3N2. The cold leg specimens of a given material showed more 7Be deposition than the hot leg specimens of the same material, consistent with the 7Be activity data on the piping. Based on the present investigations and previous data, it is concluded that 7Be produced in the Fusion Materials Irradiation Test (FMIT) facility will have sufficient nitrogen in the lithium system to form 7Be3N2. It is expected that the majority of 7Be will be transported to the colder parts of the loop and deposited as 7Be3N2. However, a small amount of 7Be in the unbonded form will be in the hotter parts of the loop and is expected to diffuse into the steel piping. Thus, it is recommended that a cold trap be used to effectively remove most of the 7Be from FMIT lithium.