ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Allen L. Camp, Gary W. Cooper
Fusion Science and Technology | Volume 6 | Number 1 | July 1984 | Pages 83-92
Technical Paper | Fusion Reactor | doi.org/10.13182/FST84-A23122
Articles are hosted by Taylor and Francis Online.
The nature of time-dependent energy deposition in inertial confinement fusion-fission hybrid reactors is examined. This energy deposition is both space and time dependent. Calculations are performed for sodium-cooled, uranium-carbide-fueled blankets. Coolant temperature rises on the order of a few degrees and fuel temperature rises on the order of a few tens of degrees are predicted per 15-MJ target pulse. Significant coolant pressure waves having peak pressures on the order of a few megapascals are predicted; however, shock wave formation in the coolant from direct energy deposition is not predicted for these configurations.