ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Toshio Ida, Shunsuke Kondo, Yasumasa Togo
Fusion Science and Technology | Volume 6 | Number 1 | July 1984 | Pages 64-82
Technical Paper | Shielding | doi.org/10.13182/FST84-A23121
Articles are hosted by Taylor and Francis Online.
A numerical analysis program for radiation transport in axisymmetric toroidal geometry AIDA is developed using the method of direct integration (method of characteristics). The shape of the torus cross section is represented by coupled ellipses with different elongations. Several new techniques, such as a ray-tracing technique in the core plasma region and subdivision of angular mesh cells, are introduced to make the method well adapted to the neutronics analysis of a tokamak. These improvements are illustrated by sample toroidal geometry calculations. To verify the validity of the present program, results of analysis for two sample problems are compared with results of DOT-3.5 as well as those of Monte Carlo calculations. Agreement between the results of AIDA and those of DOT-3.5 becomes better as the quadrature approximation used in DOT-3.5 becomes higher. For the same accuracy, the AIDA code requires only about half as much running time as the DOT-3.5 code for a practical natural lithium blanket system.