ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Stanley K. Borowski, Y-K. Martin Peng, Terry Kammash
Fusion Science and Technology | Volume 6 | Number 1 | July 1984 | Pages 7-29
Technical Paper | Plasma Heating System | doi.org/10.13182/FST84-A23116
Articles are hosted by Taylor and Francis Online.
Auxiliary radio-frequency (rf) heating of electrons before and during the current rise phase of a large tokamak, such as the Fusion Engineering Device (FED) [R0 = 4.8 m, a = 1.3 m, σ = 1.6, B(R0) = 3.62 T], is examined as a means of reducing both the initiation loop voltage and resistive flux expenditure during startup. Prior to current initiation, 1 to 2 MW of electron cyclotron resonance heating power at ∼90 GHz is used to create a small volume of high conductivity plasma (Te ≃ 100 eV, ne ≃ 1019 m−3) near the upper hybrid resonance (UHR) region. This plasma conditioning, referred to as preheating, permits a small radius (a0 ≃ 0.2 to 0.4 m) current channel to be established with a relatively low initial loop voltage (≤25 V as opposed to ∼100 V without rf assist). During the subsequent plasma expansion and current rise phase, a combination of rf heating (up to 5 MW) and linear current ramping leads to a substantial savings in volt-seconds by (a) minimizing the resistive flux consumption and (b) producing broad current density profiles. (With such broad profiles, the internal flux requirements are maintained at or near the flat profile limit.) To study the “preheating” phase, a near classical particle and energy transport model is developed to estimate the electron heating efficiency in a currentless toroidal plasma. The model assumes that preferential electron heating at the UHR leads to the formation of an ambipolar sheath potential between the neutral plasma and the conducting vacuum vessel and limiter. The ambipolar electron field (EAMB) enables the plasma to neutralize itself via poloidal EAMB × B drift. This form of effective rotational transform “short circuits” the vertical charge separation and improves particle confinement. The benefits of this effective electrostatic confinement are tempered, however, by the possibility of significant secondary electron emission from the limiters and vessel wall. A comparison of theoretical estimates and experimental preheating data from the Impurity Study Experiment-B tokamak shows reasonably good agreement and provides some confidence in the preheating power estimates obtained for the FED. Using FED preheating parameters as initial conditions, a single fluid zero-dimensional tokamak model is then used to study the time evolution of the plasma temperature, voltage, and flux requirements during the expanding radius current startup phase. The sensitivity of these parameters to variations in the initial minor radius, oxygen impurity content, and the electron preheating level is also analyzed and discussed.