ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Stanley K. Borowski, Y-K. Martin Peng, Terry Kammash
Fusion Science and Technology | Volume 6 | Number 1 | July 1984 | Pages 7-29
Technical Paper | Plasma Heating System | doi.org/10.13182/FST84-A23116
Articles are hosted by Taylor and Francis Online.
Auxiliary radio-frequency (rf) heating of electrons before and during the current rise phase of a large tokamak, such as the Fusion Engineering Device (FED) [R0 = 4.8 m, a = 1.3 m, σ = 1.6, B(R0) = 3.62 T], is examined as a means of reducing both the initiation loop voltage and resistive flux expenditure during startup. Prior to current initiation, 1 to 2 MW of electron cyclotron resonance heating power at ∼90 GHz is used to create a small volume of high conductivity plasma (Te ≃ 100 eV, ne ≃ 1019 m−3) near the upper hybrid resonance (UHR) region. This plasma conditioning, referred to as preheating, permits a small radius (a0 ≃ 0.2 to 0.4 m) current channel to be established with a relatively low initial loop voltage (≤25 V as opposed to ∼100 V without rf assist). During the subsequent plasma expansion and current rise phase, a combination of rf heating (up to 5 MW) and linear current ramping leads to a substantial savings in volt-seconds by (a) minimizing the resistive flux consumption and (b) producing broad current density profiles. (With such broad profiles, the internal flux requirements are maintained at or near the flat profile limit.) To study the “preheating” phase, a near classical particle and energy transport model is developed to estimate the electron heating efficiency in a currentless toroidal plasma. The model assumes that preferential electron heating at the UHR leads to the formation of an ambipolar sheath potential between the neutral plasma and the conducting vacuum vessel and limiter. The ambipolar electron field (EAMB) enables the plasma to neutralize itself via poloidal EAMB × B drift. This form of effective rotational transform “short circuits” the vertical charge separation and improves particle confinement. The benefits of this effective electrostatic confinement are tempered, however, by the possibility of significant secondary electron emission from the limiters and vessel wall. A comparison of theoretical estimates and experimental preheating data from the Impurity Study Experiment-B tokamak shows reasonably good agreement and provides some confidence in the preheating power estimates obtained for the FED. Using FED preheating parameters as initial conditions, a single fluid zero-dimensional tokamak model is then used to study the time evolution of the plasma temperature, voltage, and flux requirements during the expanding radius current startup phase. The sensitivity of these parameters to variations in the initial minor radius, oxygen impurity content, and the electron preheating level is also analyzed and discussed.