ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
S. J. Piet, M. S. Kazimi, L. M. Lidsky
Fusion Science and Technology | Volume 5 | Number 3 | May 1984 | Pages 382-392
Technical Paper | Safety/Environmental Aspects | doi.org/10.13182/FST84-A23113
Articles are hosted by Taylor and Francis Online.
Seven potential safety concerns for deuteriumtritium fusion reactors were examined and the influence of blanket material choice determined. This influence was quantified in terms of relative consequence indices (RCIs) according to prescribed consequence criteria. Selected combinations of structural material (Type 316 stainless steel, HT-9, vanadium alloy, or TZM), primary coolant (pressurized water, helium, lithium, or flibe), and tritium breeder (LiAlO2, lithium, or Li17Pb83) were examined. The analyses and indices were structured to focus on the specific material properties that influence the results, which allows for comparison of materials not included in the present study. The safety concerns that were found to be relatively insensitive (differing by less than an order of magnitude) to material choice are the rate of temperature increase from continued plasma heating following loss of coolant and electromagnetic effects of plasma disruptions. The range of the RCIs was about an order of magnitude for problems concerning after-heat removal, corrosion, and the thermal effects of disruptions. The following problems were found to range in severity over several orders of magnitude according to material choice: potential public health effects from radioactivity release, rapid structural oxidation, blanket chemical combustion, and coolant pressurization.