ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
S. J. Piet, M. S. Kazimi, L. M. Lidsky
Fusion Science and Technology | Volume 5 | Number 3 | May 1984 | Pages 382-392
Technical Paper | Safety/Environmental Aspects | doi.org/10.13182/FST84-A23113
Articles are hosted by Taylor and Francis Online.
Seven potential safety concerns for deuteriumtritium fusion reactors were examined and the influence of blanket material choice determined. This influence was quantified in terms of relative consequence indices (RCIs) according to prescribed consequence criteria. Selected combinations of structural material (Type 316 stainless steel, HT-9, vanadium alloy, or TZM), primary coolant (pressurized water, helium, lithium, or flibe), and tritium breeder (LiAlO2, lithium, or Li17Pb83) were examined. The analyses and indices were structured to focus on the specific material properties that influence the results, which allows for comparison of materials not included in the present study. The safety concerns that were found to be relatively insensitive (differing by less than an order of magnitude) to material choice are the rate of temperature increase from continued plasma heating following loss of coolant and electromagnetic effects of plasma disruptions. The range of the RCIs was about an order of magnitude for problems concerning after-heat removal, corrosion, and the thermal effects of disruptions. The following problems were found to range in severity over several orders of magnitude according to material choice: potential public health effects from radioactivity release, rapid structural oxidation, blanket chemical combustion, and coolant pressurization.