ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Hiroshi Yoshida, Hidefumi Takeshita, Satoshi Konishi, Hideo Ohno, Toshimasa Kurasawa, Hitoshi Watanabe, Yuji Naruse
Fusion Science and Technology | Volume 5 | Number 2 | March 1984 | Pages 178-188
Technical Paper | Tritium Systems | doi.org/10.13182/FST84-A23092
Articles are hosted by Taylor and Francis Online.
Experimental and theoretical feasibility studies of a catalytic reduction method were carried out for application to the tritium recovery processes in fusion reactor systems. Experiments on the decomposition of water vapor were performed under the following conditions: temperatures of 350 to 650 K; an H2O vapor concentration of 103 to 104 ppm; a mole ratio of CO to H2O of 1 to 10; and a space velocity of 2 × 102 to 2 × 104 h−1. The catalyst used was a mixture of CuO, ZnO, and Cr2O3. It has been demonstrated that this method using the zinc-stabilized catalyst can be adapted to recover tritium from tritiated water with a high conversion ratio (>0.999 per one path) at comparatively low temperature (450 K). The catalytic rate equation and the rate constants determined by this work can be used for designing a practical catalytic reduction bed for the decomposition process of the tritiated water.