ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Hiroshi Takahashi
Fusion Science and Technology | Volume 5 | Number 1 | January 1984 | Pages 72-79
Deep Penetration: Problem and Method of Solution | Special Section Contents / Shielding | doi.org/10.13182/FST84-A23080
Articles are hosted by Taylor and Francis Online.
The integral transport method, which has been used in the early calculation of a beam hole tube in an experimental reactor and many reactor parameters of a power reactor; has been reviewed. The Generalized First-Flight Collision Probability (GFFCP) method, based on the integral transport equation, and the discrete ordinates method, based on the differential transport equation, are compared in the context of the deep penetration problem. The direct integral method derived from the partial integral transport equation, which eliminates many of the drawbacks of the GFFCP method, is discussed. A method similar to the GFFCP method, which needs spherical harmonics expansion instead of the discrete ordinates scheme, is presented. The future of these analytical methods is discussed in the comparison with the straight numerical method based on the differential transport calculation and the Monte Carlo calculation.