ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Thomas J. McCarville, Gregory A. Moses, Gerald L. Kulcinski, Ihor O. Bohachevsky
Fusion Science and Technology | Volume 5 | Number 1 | January 1984 | Pages 5-16
Technical Paper | Special Section Contents / ICF Chamber Engineering | doi.org/10.13182/FST84-A23073
Articles are hosted by Taylor and Francis Online.
The frequency dependence of a thermal radiation field complicates the computation of radiative energy transport in optically thin media because the spectrum may be uncoupled from local thermodynamic conditions. A model for combining the effect of the frequency dependence into a radiation temperature chosen to represent the temperature of both local and nonlocal emitting regions is described. The derived equations are much easier to solve than the frequency-dependent equations and can be applied to a broad class of problems. The equations are used to investigate the response of a gas in an inertial confinement fusion (ICF) reaction chamber to target explosions. The response is compared for ambient densities of 1.77 × 1018 and 1.77 × 1017 atom/cm3. The error in using the brightness temperature instead of a color temperature to evaluate the opacities is illustrated. An analytic analysis shows the cooling wave observed from energy releases > 1018 erg will not occur in an ICF cavity. This is confirmed by the numerical calculations.