ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Thomas J. McCarville, Gregory A. Moses, Gerald L. Kulcinski, Ihor O. Bohachevsky
Fusion Science and Technology | Volume 5 | Number 1 | January 1984 | Pages 5-16
Technical Paper | Special Section Contents / ICF Chamber Engineering | doi.org/10.13182/FST84-A23073
Articles are hosted by Taylor and Francis Online.
The frequency dependence of a thermal radiation field complicates the computation of radiative energy transport in optically thin media because the spectrum may be uncoupled from local thermodynamic conditions. A model for combining the effect of the frequency dependence into a radiation temperature chosen to represent the temperature of both local and nonlocal emitting regions is described. The derived equations are much easier to solve than the frequency-dependent equations and can be applied to a broad class of problems. The equations are used to investigate the response of a gas in an inertial confinement fusion (ICF) reaction chamber to target explosions. The response is compared for ambient densities of 1.77 × 1018 and 1.77 × 1017 atom/cm3. The error in using the brightness temperature instead of a color temperature to evaluate the opacities is illustrated. An analytic analysis shows the cooling wave observed from energy releases > 1018 erg will not occur in an ICF cavity. This is confirmed by the numerical calculations.