ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. G. Murray/K. E. Rothe, George Bronner
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 1486-1490
Power Conversion, Instrumentation, and Control | doi.org/10.13182/FST83-A23066
Articles are hosted by Taylor and Francis Online.
The energy loss in a torus vessel during startup is now an important factor in a power-producing tokamak design. The torus design cannot be based on a system which minimizes the conductivity with resistive structures as in present experimental devices. If the resistivity of the torus is too high, the reactors are subject to damage from an uncontrolled fast shutdown such as a disruption. The thermal and magnetic stored energy due to the plasma current loop is several hundred megajoules, which can produce melting of the torus wall. To prevent excessive damage, a low resistance passive circuit must be provided close to the plasma edge. Another desirable design feature is to make all vacuum seals as far away from the plasma as practical. Thus, the reactor torus designs need an inner low resistance shell and an outer high resistance shell. In addition, the superconducting dewar and coil support structures provide paths for toroidal currents to flow. The calculations provided in this paper can be used to determine the size and cost of the systems as a function of the resistances of the structures. The results can thus be used to guide the preliminary concepts for the electromagnetic characteristics of a tokamak.