ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
W. K. Dagenhart, W. L. Gardner, W. L. Stirling, J. H. Whealton
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 1430-1435
Magnet Engineering | doi.org/10.13182/FST83-A23057
Articles are hosted by Taylor and Francis Online.
Scaling studies for a SITEX negative ion source to produce 200-keV, 10-A, long pulse D-beams are under way at Oak Ridge National Laboratory (ORNL). Designs have been restricted to the use of established techniques and reasonably welldemonstrated scaling. The results show that the 1-A SITEX source can be directly scaled to produce 200-keV, 10-A long pulse ion beams with a source power efficiency of <5 kW of total plasma generator power per ampere of D- beam generated. Extracted electron-to-D- ratios should be <0.06, with all extracted electrons recovered at <10% of the first gap potential energy difference. The close-coupled accelerating structure will be 5 em long and have five electrodes with 21 slits each, with a 50-kV/cm field in each gap. No decel electrode was included because of the transverse magnetic field. Electrons formed in each gap by the ~16% charge-exchange loss of D- in the total accelerator column will be collected by electron recovery structures associated with the gaps at an average energy of 50% of a gap's potential energy difference. Atomic gas efficiency will be >67%. Beam divergence calculations using the ORNL optics code give θrms = ±0.4°. The ion source magnetic field provides momentum dispersion of the extracted beam, separating out both the electrons and all heavy ion impurities and low energy D0 particles formed by charge exchange in the accelerating column. A D2 gas neutralization cell and a charge separation magnet provide 1 MW of D0 beam at 200 keV for injection. The overall beam line dimensions are 2.2 × 1.0 × 5.0 m (H × W × L).