ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
L. John Perkins, Steven A. Freije, William S. Neef
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 1407-1412
Magnet Engineering | doi.org/10.13182/FST83-A23053
Articles are hosted by Taylor and Francis Online.
The engineering design of two high-power steadystate ECRH injection systems is presented for the MARS tandem mirror reactor. With a design power of 57 MW, System I is comprised of 1 MW cavity-mode gyrotrons coupled to a novel quasioptical launching system for the combination and transmission of the ECRH power to the plasma. System II has a design power of 84 MW and comprises 2.5 MW quasi-optical gyrotron units coupled to a quasi-optical launching system similar in principle to System I but displaying minimal space requirements. Potential operating conditions, parameters and constraints are presented for multi-MW gyrotrons and quasi-optical launching systems, and key ECRH development and technology needs for commercial tandem mirror reactors are defined.