ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Bechtel-led SIMCO awarded three-year WIPP contract extension
The Department of Energy has issued a three-year contract extension to Salado Isolation Mining Contractors (SIMCO), a single-purpose entity comprising Bechtel National and Los Alamos Technical Associates as a teaming contractor, for the continued management and operations of the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-generated transuranic waste in southeastern New Mexico.
B. Curwen, L. H. Franklin
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 1373-1377
Magnet Engineering | doi.org/10.13182/FST83-A23048
Articles are hosted by Taylor and Francis Online.
The Ohmically Heated Toroidal Experiment (OHTE) is a toroidal pinch magnetic confinement plasma experiment which has been operating at GA Technologies (GA) since February 1981. In its original form, plasma current was induced by an air core induction or ohmic heating coil driven by a capacitor bank. Preliminary study revealed that greater plasma currents and pulse lengths could be achieved more economically by converting to an iron core rather than by installing additional capacitors. Therefore an iron core with a 3 volt-second capability and a stepped configuration was designed, fabricated and incorporated into the OHTE experimental device as part of a planned upgrade. To facilitate handling and installation, the iron core was fabricated in 28 segments consisting of 14 lower and 14 identical upper segments. Space limitations in the center of the machine created by existing geometry limited the flux path to approximately 1.28 m diameter or 1.296 m2. Using a stacking factor of 90% and allowing 3 mm between segments results in a true iron cross section of 1.12 m2. Each segment was fabricated by continuously winding in a “clockspring fashion” around a hardwood former Armco electrically oriented steel, 0.35 mm thick and 88 mm wide. Interspaced between laminations is insulating paper 0.02 mm thick and 88 mm wide bonded to the steel using a structural epoxy adhesive continuously applied during winding. After winding and curing, support saddles consisting of hardwood and aluminum were bonded to the segments. The segments were then cut into two identical halves on a large vertical milling machine. To eliminate electrical shorts, all machined surfaces were etched with a dilute nitric acid solution, then painted with a moisture repelling high dielectric strength epoxy spray paint to eliminate lamination to lamination creepage and surface corrosion.