ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
R.E. Potok, H. Becker, L. Bromberg, D.R. Cohn, N. Diatchenko, P .B. Roemer, J.E.C. Williams
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 1314-1319
Alternate Concepts | doi.org/10.13182/FST83-A23038
Articles are hosted by Taylor and Francis Online.
We present an analytical and numerical analysis of a tokamak reactor with a set of helical coils added in order to eliminate plasma disruptions. The optimal helical configuration was found to be a set of continuous, = 2 stellarator coils which are made of copper and are internal to the toroidal field coils, being the number of poloidal field periods. (The optimization process did not include evaluation of the viability of a modular stellarator reactor). Scaling laws were developed for this optimal configuration, and a series of parametric scans are performed with varying assumptions for the forces on the helical coils and the ratio of helical coil transform to plasma transform (M*). The option space available for attractive reactor designs is strongly constrained and involves large forces on the helical coils, low q plasma operation (q being the plasma safety factor), and moderately low M* (3 to 5). Numerical calculations showed that M* must be > 3 in order to obtain well defined flux surfaces. This is in agreement with results from the JIPP-TII tokamak.