ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
D. W. Graumann, R. L. Creedon, B. A. Engholm, J. R. Lindgren, L. Yang
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 1222-1227
Blanket and First Wall Engineering | doi.org/10.13182/FST83-A23024
Articles are hosted by Taylor and Francis Online.
A Lithium Blanket Module (LBM) representative of a fusion reactor blanket module has been designed and will be tested using the toroidal neutron source of the Tokamak Fusion Test Reactor (TFTR) beginning in 1985. A rugged design consisting of 921 2.54 em diameter breeder rods in an 80 em cubic box has been developed, and the techniques and equipment necessary for mass production of the Li20 breeder pellets have been demonstrated. Analysis using a coupled Monte Carlo neutronics model has shown that tritium production is uniform across the module to within 8 em of the edge, and that the front face fusion fluence and central region tritium production can be calculated to acceptable accuracies for eventual comparison with measurements on the LBM installed on the TFTR.