ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
P. Y. Hsu, L. G. Miller, G. A. Deis, Y. D. Harker, G. R. Longhurst, T. S. Born, E. H. Ottewitte, K. D. Watts
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 1216-1221
Blanket and First Wall Engineering | doi.org/10.13182/FST83-A23023
Articles are hosted by Taylor and Francis Online.
A large-volume, distributed, pulsed, 14 MeV neutron source, which utilizes the high powered (270-GW) Power Burst Facility (PBF) at the Idaho National Engineering Laboratory, is described. The concept of utilizing existing fission test reactors to test fusion first wall/blanket (FW/B) components and systems has been adequately documented. In all previous scenarios, the normal fission spectrum (including tailoring) was shown to produce adequate heating profiles and some tritium breeding. However, one recognized shortcoming has been the absence of the 14 MeV neutron component. This paper describes a scheme whereby the fission neutrons would be employed to produce the desired 14 MeV component. The data obtained from tests in this large-volume [20 em (8 in.) in diameter and 90 em (36 in.) in length], distributed neutron source will pertain to both near-term (Tokamak Fusion Test Reactor—TFTR) and future pulsed fusion machines. Specifically, application requiring high flux but low fluence is foreseen in the areas of dosimetry benchmarking for tritium breeding performance code verification. As a general purpose, FW/B integrated technology development capability, the PBF is shown to be pertinent to addressing the bulk-heated, solid breeder blanket thermal and mechanical issues; tritium permeation in the presence of radiation, and barrier development in the prototypical radiation environment associated with the first wall; issues associated with the technology of breeder materials; and in situ tritium recovery process characterization and system development.