ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. A. Blink, G. P. Lasche
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 1146-1151
Environment and Safety | doi.org/10.13182/FST83-A23013
Articles are hosted by Taylor and Francis Online.
Five steels (PCA, HT-9, thermally stabilized 2.25 Cr-1 Mo, Nb stabilized 2.25 Cr-1 Mo, and 2.25 Cr-1 V) are compared as a function of time from the viewpoints of activation, afterheat, inhalation biological hazard potential (BHP), ingestion BHP, and feasibility of disposal by shallow land burial. An additional case uses the 2.25 Cr-1 V steel with a liquid metal wall (LMW) protective shield between the neutron source and the wall. (This geometry is feasible for inertial confinement fusion reactors.) The PCA steel is the worst choice and the LMW protected 2.25 Cr-1 V is the best choice by substantial margins from all five viewpoints. The HT-9 and two versions of 2.25 Cr-1 Mo are roughly the same at intermediate values. The 2.25 Cr-1 V has about the same afterheat as those three steels, but its waste disposal feasibility is considerably better. Under NRC's proposed low level waste disposal rule (10CFR61), only the 2.25 Cr-1 V could be considered low level waste suitable for shallow land burial.