ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
I. Maya, H. E. Levine, D. D. Peterman, S. Strausberg, K. R. Schultz
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 1141-1145
Environment and Safety | doi.org/10.13182/FST83-A23012
Articles are hosted by Taylor and Francis Online.
Three options for the disposition of irradiated materials from the STARFIRE toroidal field (TF) magnets were examined, namely, (1) preparation of the irradiated magnet for the subsequent refabrication of a new magnet using the irradiated materials, (2) reprocessing of selected materials and the subsequent manufacturing of a new magnet using these and new materials with standard fabrication techniques, and (3) disposal of the irradiated magnet material. The results indicate that refabrication of a magnet using the acceptable components of the irradiated magnet is technologically feasible. The total cost of refabricating the 12 TF magnets was estimated to be $21 million in 1982 dollars. Since this option avoids the purchase of new magnets which would cost over $170 million, it is the preferred economic choice. In comparison, reprocessing and recycling of the magnet materials through standard channels of trade yields a net profit of $0.4 million, but requires the purchase of a new set of magnets. In the event that the old magnets are unusable (e.g., as a result of significant advances in magnet design or severe accidental damage), reprocessing of the TF-coil materials can be used to recover the decommissioning costs associated with the STARFIRE magnets. Lastly, the low induced radioactivity levels in the magnets permit their qualification as Class A radioactive waste. Simply disposing of the magnets via shallow land burial was estimated to cost $3 million, including all the associated costs of dismantling, packaging, shipping, and ultimate disposal.