ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
I. Maya, H. E. Levine, D. D. Peterman, S. Strausberg, K. R. Schultz
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 1141-1145
Environment and Safety | doi.org/10.13182/FST83-A23012
Articles are hosted by Taylor and Francis Online.
Three options for the disposition of irradiated materials from the STARFIRE toroidal field (TF) magnets were examined, namely, (1) preparation of the irradiated magnet for the subsequent refabrication of a new magnet using the irradiated materials, (2) reprocessing of selected materials and the subsequent manufacturing of a new magnet using these and new materials with standard fabrication techniques, and (3) disposal of the irradiated magnet material. The results indicate that refabrication of a magnet using the acceptable components of the irradiated magnet is technologically feasible. The total cost of refabricating the 12 TF magnets was estimated to be $21 million in 1982 dollars. Since this option avoids the purchase of new magnets which would cost over $170 million, it is the preferred economic choice. In comparison, reprocessing and recycling of the magnet materials through standard channels of trade yields a net profit of $0.4 million, but requires the purchase of a new set of magnets. In the event that the old magnets are unusable (e.g., as a result of significant advances in magnet design or severe accidental damage), reprocessing of the TF-coil materials can be used to recover the decommissioning costs associated with the STARFIRE magnets. Lastly, the low induced radioactivity levels in the magnets permit their qualification as Class A radioactive waste. Simply disposing of the magnets via shallow land burial was estimated to cost $3 million, including all the associated costs of dismantling, packaging, shipping, and ultimate disposal.