ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
S. J. Piet, M. S. Kazimi, L. M. Lidsky
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 1115-1120
Environment and Safety | doi.org/10.13182/FST83-A23007
Articles are hosted by Taylor and Francis Online.
Rapid structural oxidation resulting from accidental high temperature exposure of activated fusion material to reactive gases is potentially an important mechanism in the release of radioactivity or damage to the reactor. The reaction rates of 316 SS, HT-9, V-alloy, and TZM with air have been examined on the basis of theory and previous experiments. The low melting points of the primary oxides of the base metals cause oxidation of V-alloy and TZM to become very rapid above approximately 700°C, although vanadium species are far less volatile. The Mo content of 316 SS and HT-9 appears to make them susceptible to rapid oxidation above approximately 1000 and 1300°C, respectively. At such temperatures, the oxidation rates of steels are predicted to be over an order of magnitude less than Mo and V. The volatilization rates of TZM are expected to be several orders of magnitude higher than the other materials studied.