ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Y. Kawano, R. Yoshino, Y. Neyatani, Y. Nakamura, S. Tokuda, H. Tamai
Fusion Science and Technology | Volume 42 | Number 2 | September-November 2002 | Pages 298-314
Technical Paper | doi.org/10.13182/FST02-A230
Articles are hosted by Taylor and Francis Online.
Intensive studies on the physics of disruptions and developments of avoidance/mitigation methods of disruption-related phenomena have being carried out in JT-60U. The characteristics of the disruption sequence were well understood from the observation of the relationship between the heat pulse onto divertor plates during thermal quench and the impurity influx into the plasma, which determined the speed of the following current quench. A fast shutdown was first demonstrated by injecting impurity ice pellets to the plasma and intensively reducing the heat flux on first wall. The halo current and its toroidal asymmetry were precisely measured, and the halo current database was made for ITER in a wide parameter range. It was found that TPF × Ih/Ip0 was 0.52 at the maximum in a large tokamak like the JT-60U, whereas the higher factor of 0.75 had been observed in medium-sized tokamaks such as Alcator C-Mod and ASDEX-Upgrade. The vertical displacement event (VDE) at the start of the current quench was carefully investigated, and the neutral point where the VDE hardly occurs was discovered. MHD simulations clarified the onset mechanisms of the VDE, in which the eddy current effect of the up-down asymmetric resistive shell was essential. The real-time Zj measurement was improved for avoiding VDEs during slow current quench, and plasma-wall interaction was avoided by a well-optimized plasma equilibrium control. Magnetic fluctuations that were spontaneously generated at the disruption and/or enhanced by the externally applied helical field have been shown to avoid the generation of runaway electrons. Numerical analysis clarified an adequate rate of collisionless loss of runaway electrons in turbulent magnetic fields, which was consistent with the avoidance of runaway electron generation by magnetic fluctuations observed in JT-60U. Once generated, runaway electrons were suppressed when the safety factor at the plasma surface was reduced to 3 or 2.