ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
J.H. Schultz, D.B. Montgomery
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 1019-1024
Next-Generation Devices | doi.org/10.13182/FST83-A22992
Articles are hosted by Taylor and Francis Online.
Alcator DCT is an experimental tokamak proposed to be built at M.I.T. It features extremely long pulses, RF heating and current drive, and an all superconducting magnet system. The toroidal magnets produce a field on-axis of 7 T, permitting current drive at high density and ion heating with existing power supplies. The device is designed to maximize the use of existing facilities at M.I.T. in order to build a machine large enough for simultaneous heating and current drive at low cost. This report concentrates on a design option with 24 circular toroidal field (TF) magnets, which represents the second iteration in the conceptual design of this machine. This design is a modification of the HESTER concept developed by the authors1, The DCT design is an advance over the HESTER design, in that it has adequate horizontal port space for human access and for tangential viewing of the plasma at the geometric center. This was achieved by decreasing the number of TF coils from 36 to 24. increasing the magnet bore from 52 to 62 em and shaving diagonals from noncritical areas of the case in the lead and header region. Recent perceptions of the requirements of the tokamak program in the areas of impurity control and in-vessel component screening indicate that a third significant iteration of the DCT concept is necessary. The Alcator DCT uses pumped limiters for long term impurity control. Doubts about the efficacy of pumped limiters and a desire to concentrate on long-term impurity control issues led to the recommendation that DCT be modified to include expanded boundary and simplified poloidal divertor operation. Early work on these options is described briefly.