ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J.H. Schultz, D.B. Montgomery
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 1019-1024
Next-Generation Devices | doi.org/10.13182/FST83-A22992
Articles are hosted by Taylor and Francis Online.
Alcator DCT is an experimental tokamak proposed to be built at M.I.T. It features extremely long pulses, RF heating and current drive, and an all superconducting magnet system. The toroidal magnets produce a field on-axis of 7 T, permitting current drive at high density and ion heating with existing power supplies. The device is designed to maximize the use of existing facilities at M.I.T. in order to build a machine large enough for simultaneous heating and current drive at low cost. This report concentrates on a design option with 24 circular toroidal field (TF) magnets, which represents the second iteration in the conceptual design of this machine. This design is a modification of the HESTER concept developed by the authors1, The DCT design is an advance over the HESTER design, in that it has adequate horizontal port space for human access and for tangential viewing of the plasma at the geometric center. This was achieved by decreasing the number of TF coils from 36 to 24. increasing the magnet bore from 52 to 62 em and shaving diagonals from noncritical areas of the case in the lead and header region. Recent perceptions of the requirements of the tokamak program in the areas of impurity control and in-vessel component screening indicate that a third significant iteration of the DCT concept is necessary. The Alcator DCT uses pumped limiters for long term impurity control. Doubts about the efficacy of pumped limiters and a desire to concentrate on long-term impurity control issues led to the recommendation that DCT be modified to include expanded boundary and simplified poloidal divertor operation. Early work on these options is described briefly.