ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
John H. Pitts
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 967-972
Inertial Confinement Fusion | doi.org/10.13182/FST83-A22984
Articles are hosted by Taylor and Francis Online.
The Cascade concept uses the high-temperature (1200 K) potential of a solid Li2O pebble blanket in conjunction with centrifugal action to produce a safe and highly efficient (up to 55%) reaction chamber for commercial power production. One option using a 25-mm-thick steel wall is shown to have low primary stresses of 22 MPa, which when coupled with a secondary thermal stress of 132 MPa, satisfies the intent and methodology for an ASME-designed vessel. A high tritium breeding ratio of 1.35 results from direct exposure of the Li2O blanket to the fusion reactions. Vacuum pumping requirements of the chamber, using laser drivers at a pressure of 0.1 Torr, are a modest 4.7 m3/s for D-T and 3.1 m3/s for helium. Carbon-14 activation in the blanket is insignificant. We conclude that the Cascade concept offers an attractive option for a safe and efficient inertial fusion reaction chamber.