ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
E.G. Lovell, R.L. Engelstad
Fusion Science and Technology | Volume 4 | Number 2 | September 1983 | Pages 878-882
Inertial Confinement Fusion | doi.org/10.13182/FST83-A22971
Articles are hosted by Taylor and Francis Online.
Preliminary structural analysis and design is presented for the reaction chamber of a pre-conceptual light ion beam target development facility (TDF). The chamber consists of a capped, reinforced cylindrical shell submerged in a water shield. Axisymmetric response is determined for blast waves generated by target ignition. From the analysis, design curves are developed for dynamic displacements and flexural stresses of the shell wall. It is shown that the added mass effect of the water can substantially reduce the response and that a practical design is possible for a range of geometric parameters and materials.